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Abstract

We present a method for the efficient computation and storage of approximations of error tables used for error
estimation of a region between different time steps in time-varying datasets. The error between two time steps is
defined as the distance between the data of these time steps. Error tables are used to look up the error between
different time steps of a time-varying dataset, especially when run time error computation is expensive. However,
even the generation of error tables itself can be expensive. For n time steps, the exact error look-up table (which
stores the error values for all pairs of time steps in a matrix) has a memory complexity and pre-processing time
complexity of O(n2), and O(1) for error retrieval.
Our approximate error look-up table approach uses trees, where the leaf nodes represent original time steps, and
interior nodes contain an average (or best-representative) of the children nodes. The error computed on an edge
of a tree describes the distance between the two nodes on that edge. Evaluating the error between two different
time steps requires traversing a path between the two leaf nodes, and accumulating the errors on the traversed
edges. For n time steps, this scheme has a memory complexity and pre-processing time complexity of O(n log(n)),
a significant improvement over the exact scheme; the error retrieval complexity is O(log(n)). As we do not need
to calculate all possible n2 error terms, our approach is a fast way to generate the approximation.

Categories and Subject Descriptors (according to ACM CCS): E.2 [Data Storage Representations]: Object rep-
resentation, G.1.0 [General]: Error analysis, I.4.2 [Compression (Coding)]: Approximate methods, I.4.8 [Scene
Analysis]: Time-varying imagery

1. Introduction

The increase in computation power and storage capacity
over recent years has led to a substantial, multiple-order-of-
magnitude increase in size of datasets generated by simu-
lations. Advancing technology allows us to perform simu-
lation processes with increasing speed, leading to both an
increase in the number of time steps as well as the size of
the data generated for a single time step.

Due to the size of the datasets, the data must be re-
duced to a size where it can be interactively accessed,

retrieved and visualized. For steady, time-independent
datasets, techniques such as subdivision, multi-resolution,
view-dependent rendering and adaptive refinement have al-
ready been successfully applied.

Considering time varying datasets, techniques based upon
adaptive and incremental updates and key-framing help to
reduce the amount of data to be loaded. Techniques based
solely on adaptive and incremental updates are mostly based
on pre-defined error bounds. Key-framing allows a user to
start at an arbitrary key-frame, proceeding to the next, with
only one direction to go. None of the above techniques pro-
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vide the support of arbitrary error-bounds, arbitrary naviga-
tion in time and arbitrary resolution; they also provide only
a limited notion of re-using data from previous time steps,
especially for arbitrary navigation in time.

When scientists need to control and know the error in
the data displayed, techniques not providing methods for ex-
plicit error control are inappropriate. Spatio-temporal reuse9

with multi-resolution datasets is a solution to the prob-
lem, providing bidirectional navigation using arbitrary er-
ror bounds. It reuses parts of a dataset over longer periods
of sudden changes in time, replacing or refining parts only
when a given error criterion is no longer satisfied. This ap-
proach is based on pre-calculated errors using an error table
for every region in a multi-resolution dataset.

Error look-up tables for each region in a multi-resolution
dataset are an easy means for retrieving errors between dif-
ferent time steps without touching the data. These tables
are independent of the underlying data, which can be, for
example, an image, a volume or an isosurface. As error
calculation can be very expensive, error look-up tables (or
simply error tables) help to avoid these costs during run
time by pre-calculating errors in advance for later retrieval.
The information provided by error-tables can also be used
for replacement-optimization for adaptive, view-dependent,
multi-resolution replacement strategies.

A naive approach to represent these error tables uses
n×n-matrices for each region, where each pair of time steps
is evaluated and stored within a matrix (e(t0, t1) := e[t0][t1]).
This approach gives us an exact error, as every pair of time
steps is stored within the matrix. With a memory complex-
ity of O(n2) for n time steps, both the size of this error ta-
ble and the number of error-calculations to set up the matrix
can become very large. Reducing memory requirement and
computation time for error tables, while maintaining accu-
racy at acceptable error access and retrieval times, is a nec-
essary task to allow one to apply error tables to simulations
with larger number of time steps. For an error-based multi-
resolution display of time-varying data as described by Nu-
ber et al.9, error-tables are a solution for fast error-retrieval.
With an increasing number of time steps these tables can be-
come very large, so that for a large enough number of time
steps n the size of the error-tables becomes larger than the
size of the dataset that is displayed, rendering simple tables
for spatio-temporal reuse with larger n unusable.

We solve the memory problem using trees: Leaf-nodes
correspond to time steps of the dataset, while internal nodes
contain approximations of their children – an edge between
two nodes describes the error between the two nodes. To re-
trieve the error between two given time steps, we calculate an
approximated error by traversing the tree from one leaf-node
to the other, accumulating the errors of the edges traversed.
By using trees, we achieve a significant reduction with re-
spect to memory, at the same time reducing the number of
necessary evaluations of error terms to set up the tree. A tree

with a fixed bifurcation factor k has a memory and initializa-
tion complexity of O(n logk(n)), and a retrieval complexity
of O(logk(n)). We used trees with both fixed and adaptive bi-
furcation factors. When using incremental error-lists, where
e(ti, t j) = ∑ j−1

k=i e(tk, tk+1), i < j, memory and initialization
complexity are both O(n), but retrieval complexity is also
O(n).

To reduce the evaluation error, introduced by adding error
terms during traversal, and improve the approximation qual-
ity, we use the concept of tunneling during traversal, navi-
gating not only between parent and child nodes but also be-
tween node neighbors on the same tree level.

2. Related Work

One area of related work is the visualization of time-varying
data. Finkelstein et al.3 used a multi-resolution image tech-
nique and a quad-tree to decompose an image. In their ap-
proach, each node contains the averaged color of the chil-
dren, and time was encoded using a time-spanning binary
tree for each subregion. Other techniques include Time-
Space Partitioning by Shen et al.12, decomposing space us-
ing an octree, and decomposing time in each node using a
binary tree, or THIT by Shen11, which is a temporal hierar-
chical index tree for accelerated isosurface extraction, based
upon the use of temporal subdividing binary trees. Ma et al.7

used voxel-level quantization, octree encoding and differen-
tial encoding for compression on voxel, spatial and temporal
dimensions, achieving compression ratios up to 90%. Nu-
ber et al.9 investigated the spatio-temporal reuse of data in
a multi-resolution time-varying datasets using error tables to
determine whether re-use, re-load or refinement is necessary.
By relating the error directly with time and evaluating error
at run time their method supports arbitrary navigation and
interactive re-definition of the error during run time.

Error tables can also be regarded as height-field data, de-
fined on a regular grid. These height-fields, which can eas-
ily be represented as regular triangulated surfaces, can be
approximated using mesh simplification methods10, 14. (An
overview was given by Cignoni et al.2) Mesh simplifica-
tion methods generate a (sometimes multi-resolution) rep-
resentation of the underlying triangulation. An area related
to height-field simplification and reduction in this context is
work done on surface approximation4, 5, 13 and subdivision
surfaces with wavelets1, 6. Although mesh simplification and
surface methods can produce very good results, these tech-
niques have the common drawback that additionally to the
time needed for data approximation, all error terms must be
evaluated a priori for an appropriate approximation.

3. Approach

Our approach is based on the idea of approximating er-
ror tables for time-varying datasets describing the error (or
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Figure 1: Influence of location in branches for tree-based
error evaluation between successive time steps: accurate for
same parent (e′1 ≈ e1), not accurate for different branches
(e′2 � e2)

difference) between arbitrary time steps using tree struc-
tures. We use each of the nodes in the tree to represent
or approximate a time step, where leaf nodes represent the
time steps ti and internal nodes represent either averages or
best-representatives of their children. The error between two
nodes connected by an edge is associated with the edge it-
self. The error between a parent and a child node is stored
with the child node.

When calculating the error for two arbitrary time steps,
we traverse the tree from one node to the other, starting at
the leaf-node representing the smaller time step, and accu-
mulating the error terms of all the edges we traverse un-
til we reach the larger time step. This approach requires
the underlying error norm e(ti, t j) = |dist(t j, ti)| to satisfy
|dist(ti, tk)|+ |dist(tk, t j)| ≥ |dist(ti, t j)|.

As long as changing the time restricts motion to one
branch within the tree (switching to a node that has the same
parent as the current node) the results should be rather close
to the real values. If the time steps are located in differ-
ent branches, moving from one branch to another introduces
most likely a large error term into the calculation. Even when
the leaves representing the time steps are located next to each
other in time, the retrieved error can differ remarkably from
the real error, depending on the number of parental nodes
that need to be traversed to get from one node to the other.
This means that the approximated error for two succeeding
time steps within the same branch would be fairly accurate,
while the error to the next time step in a different branch can
become very large, as edges to nodes representing a larger
time-span need to be traversed (Figure 1), even if the error
between both pairs is the same.

Assuming that only errors between close datasets are re-
trieved, a simple list with incremental errors between suc-
cessive time steps would be a solution, simply accumulating
all error terms between two time steps. For small steps the
result would be quite accurate, whereas for larger steps, even
with small changes in the dataset over time, the estimated er-

Figure 2: Array-based tree organization

ror term and the real error would diverge with an increasing
number of time steps.

While lists give us better approximations for errors be-
tween close time steps, trees give us better approximations
for distant time steps. We use trees with internal shortcuts,
combining both approaches. Shortcuts are additional edges,
connecting nodes within the graph on the same level. We
can use “tunneling” when moving from one branch to the
next, reducing the number of edges to traverse and thus min-
imizing the resulting error term. Tunneling is the process of
moving from one branch in the tree to another branch be-
tween nodes using shortcuts, without traversing a common
ancestor.

3.1. Tree Representation

As the tree representation should be as compact as possible,
the overhead introduced by the tree data structure should be
as small as possible. We have restricted ourselves to trees
with all leaves on the same level. An index-based tree repre-
sentation was used, storing each node within a large static ar-
ray (Figure 2). Generally, there are two possible approaches
to store trees: (i) a fully implicit tree structure, where the
tree is fully expanded and the parent/child indices can be
derived from the index of the node itself (at least for an n-
ary tree), and (ii) a partially implicit structure, where only
the number of nodes required is used and additional infor-
mation is stored to maintain parent-child relations. We use a
partially implicit structure, as the fully implicit tree structure
for an n-ary tree induces large memory overhead (especially
for n > 2) when the number of time steps (and thus number
of leaves) is slightly larger than a potential (nk), with k being
the height of the tree. The overhead can be n times as large
as the memory needed when the number of time steps equals
(nk +1). An example is shown in Figure 3.

In a partially implicit structure, we only need the follow-
ing information to reconstruct the internal structure of the
tree:

• number of leaf nodes and
• number of children per non-leaf node.
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Figure 3: Memory requirement for fully implicit (all nodes)
and partially implicit structure (gray nodes) of a binary tree

The number of levels and the number of nodes per level
can be derived from the given values when reconstructing the
tree structure in a bottom-up manner. For navigation within
the tree, to traverse the tree from parent to children and vice
versa, we additionally need

• the index of the parent node within the parent level and
• the index of the first child node within the next level.

This tree-organization fits our method of construction of
and navigation in the tree between neighboring nodes – both
operations are solely based on index arithmetics.

3.2. Constructing the Tree

We generate the tree in a bottom-up approach, starting at the
leaves and combining several nodes under a new parental
node. This process is done for each level, until the number of
parental nodes generated equals one, which is the root. Each
edge connecting a child to its parent contains the error term
between the child and the parent. By using a bottom-up ap-
proach the array containing the tree can be extended without
the need to move branches within the array. The difference
between n-ary and adaptive trees is the fact that the number
of nodes for a parent node must be determined when initial-
izing an adaptive tree. In the following, we first describe how
we construct n-ary trees and the adaptive tree, before intro-
ducing additional error terms stored with the nodes. These
additional terms are used later during the error term approx-
imation between two arbitrary time steps.

3.2.1. Selecting a Dataset Represented by the Parental
Node

Generally, there are two ways to select a dataset for an in-
ner node: either one of the child nodes is used to represent
the parent, or an average of all the child nodes is used for
the parental node. The advantage of using the average is that
the average error between parent and children will be smaller
when using averaged data. The advantage of selecting a child
node is that the error approximation can be improved during
tree traversal; the error term can be reset to zero when en-
countering the initial time step, or the traversal can be termi-
nated earlier when the target time step is encountered during

traversal. In both cases, the number of edges contributing to
the error term is reduced, improving the final error approxi-
mation (see section 4.4 for details).

3.2.2. n-ary Trees

n-ary trees have the advantage that the number of nodes re-
quired can be derived immediately from n and the number
of leaf nodes (or time steps), as well as the number of nodes
in the upper and lower levels. As the number of edges is also
known prior to error term calculation, the number of opera-
tions to calculate the error terms is known.

After selecting an approximation for the parent node, the
error to all the child nodes needs to be calculated and is
stored with the child nodes, representing the error term for
the connecting edge.

3.2.3. Adaptive Trees

Adaptive trees are more complicated to generate than n-ary
trees. Given an initial error tolerance, nodes are assigned to a
common parent as long as the error criterion is fulfilled (e.g.,
maximum error between two arbitrary nodes or sum of error
increments between consecutive time steps). All nodes are
then grouped under a new parental node, an approximation
is chosen, and the error terms evaluated. The advantage of
adaptive trees is the fact that the bifurcation factor depends
on the error: larger numbers of leaves can be grouped under
a parent node if the change over time is small, and smaller
groups if the change over time is large.

3.2.4. Additional Error Terms

Together with the error term between parent and child node,
we also store additional error terms:

• intra-level error terms: error between direct neighbors
on the same level, and

• inter-level error terms: error between a node and the
right neighbor of the parent

The intra-level error terms are the basis for tunneling be-
tween branches (see section 3.3.2). By exploiting the array
structure, the right neighbor of a node with index i can be
accessed via the index i + 1, as long as the node is not the
last on the level; the left neighbor can be found similarly us-
ing index i− 1, if the node is not the first one on the level.
As the error terms are symmetric, e(ti, t j) = e(t j, ti), we need
to store only the error to the right neighbor; the error to the
left neighbor is the error of the left neighbor to the current
node. Inter-level error terms, when applicable, further reduce
the number of edges to traverse during error calculation for
larger time steps (see section 3.3.3).

3.3. Evaluation of Error Terms

During tree traversal we add up the error terms represented
by the traversed edges within the graph. We have considered
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Figure 4: Edge-based error calculation by following tree
edges only

three different approaches to evaluate an error term within
the tree:

• edge-based approximation: traversing only the edges
found in the underlying tree structure

• intra-level approximation: traversing the edges found in
the underlying tree structure plus edges between nodes on
the same level

• inter-level approximation: traversing the edges found in
the underlying tree structure plus edges between nodes on
the same level and edges between nodes on consecutive
levels

We were especially interested in the relationship between
evaluation mode and approximation error. (See Table 2 and
Figure 8).

3.3.1. Edge-based Error Term Approximation

When performing a “edge-based” approximation, we only
use the edges found in the original tree structure (Figure 4).
The results achieved are fairly accurate, as long as the nodes
are not too far away from each other or located in a hierarchy
of different branches.

3.3.2. Intra-level Error Term Approximation

During intra-level approximation, we also use the intra-level
error terms between neighboring nodes (Figure 5). This ap-
proach allows us to perform, for example, tunneling for con-
figurations where the edge-based approximation might gen-
erate poor results. Using intra-level approximation, the num-
ber of error terms to be stored is doubled when compared to
a tree only suited for edge-based approximation.

We decide which edge to follow primarily based on the
number of edges that need to be traversed. For two nodes
on level k with a common ancestor on level k + l, the up-
per bound of edges to be traversed is 2 ∗ l, which is the
number of edges to be traversed during edge-based approx-
imation. We generally use the intra-level error terms when
2 ∗ l > index(a) − index(b). In some cases, better results
can be achieved by traversing differently, but detecting these
cases is expensive, as all possible paths need to be traversed
in order to find the optimal one.

Figure 5: Intra-level error calculation by following tree
edges and intra-level edges

Figure 6: Inter-level error calculation by following tree
edges, inter- and intra-level edges

Due to array organization, the distance between two nodes
on the same level can be determined by the difference in their
indices. The decision whether to move within the same level
or go one level further up can be reduced to a comparison of
index difference and distance to the common ancestor.

We also use enforced tunneling when the left node is the
right most under its parent (going to the right) or the right
node is the left most under its parent (going to the left),
which implies tunneling the parent in both cases. We can
therefore move between different subtrees, possibly reduc-
ing the maximum height to traverse by eliminating a high
level ancestor.

3.3.3. Inter-level Error Term Approximation

Inter-level approximation is an improvement over intra-level
approximation. It increases the number of error terms per
node by a factor of 1.5, when compared to intra-level ap-
proximation, or a factor of three, when compared to edge-
based approximation. The difference between intra-level and
inter-level approximation is that we also store inter-level er-
ror terms between a node and the right neighbor of its parent,
further reducing the number of edges to be traversed. The
maximum reduction of number of edges corresponds to the
height of the highest node visited during traversal, replacing
a “up-and-to-the-right step” by a single step (Figure 6).

3.4. Storage Scheme

In case of out-of-core applications, where tables must be re-
trieved from disk, we need an efficient way to load and ini-
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tialize the tables. Storing and retrieving error trees is fairly
easy due to the underlying array structure. As all nodes are
stored consecutively in the array, we can simply write the ar-
rays containing the error term information to disk. Besides
the error terms themselves, we also need to store the number
of time steps. If we have an n-ary tree, we only need to store
the number of time steps, k. The numbers of nodes per level
are given by

nodes(level0) = k and

nodes(levell+1) =

⌈

nodes(levell)
n

⌉

.

Similarly, the index of the ith child for the jth node at level
l can be calculated as

childi( j) = index(parent)− j−nodes(levell−1)

+ j ∗n+ i

= index(parent)−nodes(levell−1)

+ j ∗ (n−1)+ i.

Concerning adaptive trees, we need to store the number of
children for non-leaf nodes. If we store the number of chil-
dren for all non-leaf nodes in the order they are found dur-
ing traversal of the array, we can restore the tree structure
following this algorithm:

nodesTraversed = 0;
nextParentIndex = numberOfTimesteps;
while ( nextParentIndex < numTreeEntries ) {

numberOfNodes = next number of nodes under parent;
for ( i=0; i < numberOfNodes; i++ )

parent(nodesTraversed+i) = nextParentIndex;
nodesTraversed += numberOfNodes;
nextParentIndex++;

}

Starting at the first leaf node, we set the parent index of the
following number of nodes to the same value, which is ini-
tialized as the number of time steps, and increase the parent
index after wards, until the index of the next parent equals
the number of nodes in the tree. To restore a tree from disk,
we need to load the error terms and reconstruct the internal
structure in a single pass.

4. Results

We have applied our method to a simulated Richtmyer-
Meshkov dataset8 (Figure 7). The simulation describes the
process of two fluids mixing when a shock wave has passed
through them. We have extracted one data slice from the vol-
umetric dataset for each of the 274 time steps. The images in
Figure 7 show a cross section through the volumetric dataset
parallel to the direction of the shock wave. The error between
two time steps is given by adding the absolute differences for
all pixels, and subsequently normalizing the difference to a
value between zero and one. (A value of one corresponds
to the maximum possible difference for a single pixel multi-
plied by the number of pixels per dataset.)

t=0 t=136 t=273

Figure 7: Cross-section of three time steps of the Richtmyer-
Meshkov simulation

Method Number of Entries/Percentage
#Children Edge-based Intra-level Inter-level

squared 37675/100%

adapt. (R) 707 / 1.9% 1414 / 3.8% 2121 / 5.6%

adapt. (A) 655 / 1.7% 1310 / 3.5% 1965 / 5.2%

2 553 / 1.5% 1106 / 2.9% 1659 / 4.4%

3 415 / 1.1% 830 / 2.2% 1245 / 3.3%

4 369 / 1.0% 738 / 2.0% 1107 / 2.9%

5 355 / 0.9% 710 / 1.9% 1065 / 2.8%

10 306 / 0.8% 612 / 1.6% 918 / 2.4%

Table 1: Number of entries for 274 time steps of a
Richtmyer-Meshkov simulation. Shown are the numbers for
all three modes and the percentage values of error terms
when compared to the exact error table.

4.1. Memory Requirements

Table 1 shows the numbers achieved when applying our
method to the 274-time-step Richtmyer-Meshkov dataset.
This table lists the number of error terms stored for a look-
up matrix (first row), and the number of nodes required for
the different trees and the different evaluation modes. For
intra-level evaluation, i.e., when using the adaptive tree with
representatives, our method requires 1414 error terms, or
3.8% when compared to the exact look-up matrix (37673 en-
tries). The maximum error between the look-up matrix and
the adaptive tree is 1.01 ∗ 10−4, with a maximum value of
4.74∗ 10−4 in the look-up matrix itself (Table 2). Thus, the
number of entries for the trees is much smaller than the num-
ber of entries for a matrix.

4.2. Quality of Approximation

The quality of the approximation depends on the dataset,
the evaluation scheme, and the error tree used. Inter-level
and intra-level evaluation generate nearly identical results,
with inter-level results being slightly better. Table 2 shows a
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inter-level evaluation intra-level evaluation edge-based evaluation

Figure 8: Surfaces showing exact two-dimensional error table (green), adaptive tree (wire frame, using original datasets for
internal nodes) as a height field e(ti, t j), and difference between both tables (yellow): inter-level evaluation (left), intra-level
evaluation (middle), edge-based evaluation (right).

Method max(eappr. − e) eappr. − e σ(eappr. − e)

adaptive, representatives

edge-b. 4.57∗10−4 1.67∗10−4 2.81∗10−2

intra-l. 1.01∗10−4 1.81∗10−5 5.28∗10−3

inter-l. 9.56∗10−5 1.67∗10−5 5.07∗10−3

binary, representatives

edge-b. 4.75∗10−4 1.82∗10−4 3.06∗10−2

intra-l. 9.92∗10−5 1.86∗10−5 5.63∗10−3

inter-l. 9.36∗10−5 1.68∗10−5 5.29∗10−3

Table 2: Maximum difference (max), average difference (e)
and variance (σ) of an adaptive and a binary tree using rep-
resentatives with respect to the exact error table (max. value
found in error table being e = 4.74∗10−4). Images for the
adaptive tree are shown in Figure 8.

comparison of all evaluation methods for an adaptive and
a binary tree. Images of the corresponding error-surfaces
for the adaptive tree are shown in Figure 8. For non-edge-
based evaluation, the approximation is very good from very
small to relatively large differences in time, when comparing
the difference surface to the exact height field. Noticeable
differences are visible only for very large time differences,
which is acceptable. For edge-based evaluation, especially
for smaller differences in time, the resulting error can be very
large.

Figure 9 shows the behavior of the approximation scheme
for an adaptive and a binary tree for the Richtmyer-Meshkov
simulation slices, both trees using inter-level evaluation. It
can be seen that the adaptive approach generates the best er-
ror values for small to reasonable large time steps. With the
binary tree, we obtain more peaks at a regular distance, es-
pecially for smaller time steps. Usually the n-ary trees are
smaller than the adaptive trees, but the adaptive trees pro-

adaptive

binary(n = 2)

Figure 9: Surfaces showing exact two-dimensional error ta-
ble (green), tree (wire frame, using original datasets for in-
ternal nodes) as a height field e(ti, t j), and difference be-
tween both tables (yellow): adaptive tree (top), binary tree
(bottom).

vide better approximation quality. A balance must be found
between memory available, evaluation time, and error toler-
ance.

When using n-ary trees, it can be observed that the ap-
proximated error table shows a noticeable pattern caused by
the underlying tree structure (Figure 10). While the adaptive
tree shows no regular pattern, the binary tree shows regular
occurrences of small peaks at an equal distance from the di-
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adaptive n = 2

n = 3 n = 4

Figure 10: Pattern on error height field caused by n-ary
trees. Images show adaptive tree and trees with bifurcation-
factor n = 2,3,4.

agonal. It can be seen that for n-ary trees, for a growing num-
ber of n, the peaks move closer to each other and the diag-
onal, which represents the error terms for immediate neigh-
bors, decreasing in number but increasing in height. This ob-
servation shows that the accuracy decreases for a subset of
time step combinations. With increasing n an internal node
spans a larger time span, resulting in an increase of the aver-
age error between a set of child nodes and their parents, as
more time steps are represented. Trees with larger n should
thus not be used for datasets with continuous changes over
time.

The pattern becomes even more visible when looking at
the evolution of the introduced error with advancing time t,
starting with the first time step t0 (Figure 11). The frequency
of peaks in the introduced error relates to n for n-ary trees.
For larger n the difference becomes smaller, especially for
larger ti, whereas the average error and the variance become
larger due to the peaks.

To verify these observations, we generated a synthetic
dataset consisting of 100 unicolored equidistant time steps,
with shades of gray from black to white. Figure 12 shows the
error terms obtained when calculating e(t0, ti), i = 0,1, ..,99,
both for average and representative trees. The difference be-
tween two time steps ti and t j (or the error e(ti, t j) when us-
ing t j to represent ti) is |i− j|/100.

Both figures show that the number n of children in regu-
lar trees causes an pattern on the error approximation, inde-
pendent of the way we choose the datasets for the internal
nodes. The uniform characteristic of the dataset is the rea-
son for this fact, as each representative has a maximum dis-
tance from the average equal to half a time step. The devia-
tion increases dramatically at points where the error evalua-
tion moves from e(t0, tk−1) to e(t0, tk), k mod n = 0, showing
that our tunneling approach helps suppressing the first peak
one would find when advancing from e(t0, tn−1) to e(t0, tn).
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Further suppressing depends on the nature of the underlying
dataset. One can also see that the adaptive approach follows
the exact error table, with a small deviation for the average
tree. As the pattern seems to affect more error pairs for larger
n, very small values for n (two or three) should be chosen
when no adaptive tree is used.

4.3. Timing Results

Using trees instead of a simple table has an impact on re-
trieval time during run time, as a simple look-up is re-
placed by index- and error-calculations. We have measured
the evaluation-time for the simulated Richtmyer-Meshkov
dataset with 274 time steps, resulting in 37675 possible
pairs. As can be seen in Table 3, a simple table is most ef-
ficient when evaluating all pairs. For a tree the evaluation
time increases with decreasing bifurcation factor. The evalu-
ation time is the time needed to evaluate all 37675 time-step
pairs. For smaller time differences, evaluation time for a sin-
gle pair is less than for larger time differences, when more
nodes need to be traversed.

Tree Evaluation-Mode
Edge-based Intra-level Inter-level

squared 0.01s

adapt 0.062s 0.1s 0.1s

2 0.048s 0.084s 0.081s

3 0.036s 0.062s 0.06s

4 0.031s 0.055s 0.05s

5 0.03s 0.05s 0.047s

10 0.025s 0.042s 0.038s

Table 3: Evaluation-time for all 37675 time-step pairs. Tim-
ings show error retrieval when table/tree is completely in
memory.

4.4. Comparing the Use of Averaged and Original Time
Steps for Internal Nodes

When an internal node represents an original dataset, the
number of error terms to be accumulated during traversal
can be reduced when the internal node represents either the
start or the end time step of the error term to be evaluated,
improving the accuracy of our approximation.

When nodes do not represent single time steps, the dataset
needs either to be generated on the fly (being expensive and
counterproductive) or loaded (requiring additional datasets
to be stored, increasing the overall size of the dataset used).
Especially for datasets with large single time steps, like

n = 2, average n = 2, representative

Figure 13: Comparison between average and representative
based trees (n = 2, close-up of error surface shown).

multi-resolution volumetric datasets, the additional storage
space or bandwidth might not be available, making the use
of time step representatives the better or necessary choice.
By inspecting the difference surfaces shown in Figure 13, it
can be seen that the use of representatives can lead to ridges
in the surface, marking more accurate error terms within
higher-error areas due to shorter traversal paths as the rep-
resentative of the starting dataset has been encountered. De-
pending on the properties of the underlying dataset and the
storage-space available, using representatives instead of av-
erages can be the better choice.

5. Conclusions and Future Work

We have described a method extending error trees for the
approximation of error tables, resulting in comparable er-
ror terms for smaller time steps and acceptable error terms
for larger time steps with a reduced number of error com-
putations for approximation generation. Deviations from the
exact error with this technique for larger time steps are ac-
ceptable, as the probability for a region being replaced is
higher for larger than for smaller time steps. The approach
can be applied to datasets of arbitrary dimensions. Espe-
cially for multi-resolution approaches, approximated error
tables can be used to estimate the error between arbitrary
time steps without the necessity of touching the data, which
makes the method also independent of the size of the un-
derlying dataset. Especially for larger number of time steps
the amount of memory and computation time required for a
single error tree is significantly smaller than for an error ma-
trix, so that additional computation time can be neglected, as
page faults will occur less often.

We plan to investigate further the use of error trees for
table approximation, especially in the context of optimiza-
tion for adaptive error tree calculation, which is the most
expensive type of tree to construct. Another topic of interest
is to integrate error trees into existing frameworks for time-
varying multi-resolution datasets, which use error tables. We
expect that comparisons between a multi-resolution approx-
imation based upon error matrices to be of the same quality
as well approximating error trees.
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